LHC LUMINOSITY PROJECT Test Beam Results for the Ionisation Chamber Detector

M. Placidi

on behalf of the **CERN-LBNL Collaboration Project**

for the LHC Luminosity Monitoring and Optimisation

Massimo Placidi

Who & What

- The CERN-LBNL LHC Luminosity Project
 J.F. Beche, M.T. Burks, P.S. Datte,
 J.E. Millaud, V.J. Riot, W.C. Turner
 P.F. Manfredi, L. Ratti, V. Speziali, V. Re
 M. Haguenauer, M. Placidi, H. Schmickler
- Contents
 - Historical & Concepts Purposes of Tests Simulations Results from Run 2000 Plans for Run 2001

Concepts and Developments

(W.C. Turner / LBNL)

- Instrument TAN (TAS) Absorbers at LHC High Luminosity IPs TAN only : ⇒ Luminosity TAN and TAS : ⇒ Luminosity + Crossing Angle + IP Position
- @ TAN: Detect Flux of Neutral particles from IPs
 @ TAS: Detect Flux of Charged particles
- **Detector**(s)

Ionisation Chamber / LBNL project CdTe Solid state / SL-BI project **Prototype Detector Tests**

- Simulate Electro-magnetic Showers initiated by Neutrals in TAN
- Modular Fe Absorber on H4 SPS 450 GeV *p*-Beam Prototype IC @ Shower Maximum
- Test Detector Sensitivity and Speed
 Compare Detector Performance to Design
 Compare absorber yield with Monte Carlo simulations

MARS Simulations for H4 Tests / 1

 Shower development simulated as a function of absorber material/thickness to locate shower maxima.

Schematic side-view of Cu/Fe/W/Ar radiator model

- Incoming 450 GeV proton beam enters the left side along the z-coordinate and at x, y=0.
- Tungsten slice after Copper/Iron radiator displaced along z for γ best re-conversion efficiency.
- Argon slice simulates the IC detector.

Massimo Placidi

Shower particles @ detector

All-charged transverse distributions and energy spectra

Massimo Placidi

Energy Deposition / 1

Total Energy Deposition in a 28cm long Fe absorber

Massimo Placidi

Energy Deposition / 2

Most shower confined in $\mathbf{X} = \pm 0.5$ cm

Longitudinal shower development at different radii X

Shower Max. predicted at $\mathbf{Z} \sim \mathbf{21} \text{ cm}$

Massimo Placidi

Summary

- Prototype IC proved fasibility to detect hadronic/em showers initiated by 450 GeV protons
- Linear dependence of signal amplitude with Ar/N₂ Gas pressure was demonstrated
- Position of shower maximum agreed with MARS simulations
- Improvements are required to: eliminate capacitive coupling reduce pulse width from ~ 175 ns to design 25 ns.

/tex/talks/BI/biday12_00.ps