

Digital Acquisition Board (DAB) for LHC Orbit System

People involved:
Jean-Jacques Savioz: FPGA
Rhodri Jones: Hardware responsible
Daniel Cocq: WBTN responsible
Lars Jensen: Software responsible

- The DAB module, developed with Triumf (Canada) allows beam measurements at 40 MHz
- Measurements in the lab (WBTN calibration pulses)
- Measurements on the beam
 - Calibration with MOPOS system
 - AC dipole studies
 - Electron Cloud
- Cabling problems to WBTN
- Radiation tests TCC2
- Future of the DAB module (SPS and LHC)
- Conclusions

The DAB VME prototype module

- 6U VME module
- Two Altera FPGAs for the logic
 - 1) VME accesses (A24D16, DMA, interrupt)
 - 2) Presently only 'random' (capture) acquisitions available
 - 3) Capture registers allow acquisitions of selected bunches over selected number of turns and storage in SRAM memory (max number of data (bunches*turns) = 2^16)
- PLL creates the 40 MHz clock (from SPS Frev) for the synchronised acquisition of Hor + Ver position (+ the intensity signal, not yet)
- Use of external 40 MHz timing to replace the PLL, is foreseen (TTC ?)
- Digital delay line (step ~ 2 [nsec]), to synchronise with WBTN (autotrigger principle), where the ADC (10 bit unipolar) is placed.

Measurements in the lab Calibration with WBTN

Calibration with 'LEFT' ADC value

Calibration with 'CENTRE' ADC value

Measurements on the beam (Calibration with MOPOS)

Calibration with MOPOS system Vertical plane

07/12/2000

Measurements on the beam (AC dipole)

07/12/2000

Measurements on the beam (Electron Cloud studies)

07/12/2000

Cabling problems to WBTN in the vertical plane

07/12/2000

Radiation tests TCC2

FPGA writes a known pattern to SRAM at reset and checks subsequently the content -> Error detection

Future of the DAB module (SPS and LHC)

SPS replacement for IBMS (Ana)

- Beam intensity (FBCT) and position (based on WBTN) for individual LHC bunches
- New front-end hardware development during 2001
- Prototype system during 2002 in BA3

LHC Closed Orbit system

- CPU and DAB modules no-longer in LHC tunnel
- Signals from WBTN transferred via optical fibre to surface buildings with easy access to VME crates in case of problems and no radiation (SRAM)

Conclusions

- The development of the DAB module (hardware and software) on the other side of the Atlantic has been a challenge in terms of communication
- Emails cannot replace face to face contact
- The DAB module has helped us to understand possible problems with the LHC Closed-Orbit system (radiation, cabling etc)
- Next generation of WBTN and DAB for LHC are being specified (dead-line February 2001). We hope that they will be based on an optical transmission of analogue signals