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Summary

The respective perturbations of the beam transverse spectrum by either the non-linear beam motion
or the non-linear transfer function of the beam position monitors (BPM) are compared. A level of
significance of the perturbation is defined assuming a perfect LHC with lattice sextupoles only. The
results show a large robustness against the BPM non-linearity. This allows to relax significantly
the requirement of the non-linearity of the BPM system.

1 Introduction

The most direct method to measure the non-linearity of the beam motion is to kick the beam
transversely and observe its trajectory with beam position monitors (BPM). The significant
non-linearities in LHC are essentially b5, a4, b4 and b6, i.e. decrease with at least the third
power of the amplitude. Their effect is by design negligible for amplitudes corresponding
to the beam distribution (±3σ). The measurement of the non-linearity requires thus large
amplitudes but not so large as risking to quench the machine (the aperture without colli-
mators is around 10σ). A good compromise seems to kick to amplitudes in the range of 5
to 7σ (about 7 mm at 450 GeV). In this amplitude range, the linearity of the BPM transfer
function shall be such as to avoid fake non-linear signals which could be mis-interpreted.
The non-linearity of the BPM transfer function arises from the geometry of the sensors and
from the normalization and processing of the analog signals. The systematic part of the non-
linearity is corrected either electronically or by data post-processing (this will be the case
in LHC, was the case in the LEP BOM system but not in the SPS one). After correction,
a residual non-linearity, different from prototype to prototype, is observed. The aim of this
note is to specify a tolerance based on beam dynamics requirements for this residual random
non-linearity.

This is an internal CERN publication and does not necessarily reflect the views of the LHC project management.

1



2 Methodology

In the LHC regime of weak non-linear perturbations, their effect appears mostly in the
Fourier transform of the beam trajectory as a set of ‘harmonics’. There is presently no iden-
tified criterion to define bounds for these harmonics which would yield ‘good’ beam condi-
tions (lifetime, background,...). Attempts already made at specifying the BPM non-linearity
gave tight requirements with expected significant consequences on the complexity/cost of
the BPM system. They are briefly summarized.

In [1], the authors specified a tight peak non-linear error (±50µm) using a direct com-
parison between the BPM non-linearity and resolution in the space domain. The reference
beam oscillation amplitude was taken to be 1σ. As noted above, the frequency domain is
the most relevant one. In this domain, the spectral characteristics of the resolution (addi-
tive noise) and of the non-linearity of the transfer function (multiplicative noise) are very
different and do not lend themselves to a direct comparison. The reference beam amplitude
was furthermore taken small, thereby tightening the requirements.

The non-linearity of the BPM transfer function is mostly of third order in the amplitude
and produces an octupole-like perturbation. In [2], this perturbation was required to be
smaller than the spectral line of the resonance (4,0) by parasitic octupoles. The latter had
been studied in the search of a correlation of the dynamic aperture with systematic low-order
resonances and found insignificant for the beam dynamics [3]. This is a consequence of the
mixing due to the rapid rotation of the resonance phase even when the cell phase advance
was closer to 90◦ (before the tune split). Several studies on later versions of LHC confirm
the negligible excitation of (4,0), e.g. [4], [5], [7]. In fact the octupoles act mostly through
the amplitude detuning. This term of comparison does not seem appropriate.

Finally the tolerance on the non-linearity was estimated [8] using the method of measure-
ment of the resonance driving terms discussed in [9]. It is however not possible to disentangle
the effect of the BPM errors proper from the noise sensitivity of this specific method.

In the light of these difficulties, we have revisited the issue in an attempt to identify
conditions which would be both sufficient and necessary. The approach is simple enough to
lend itself to check and discussion:

• The perturbation of the beam motion or of the BPM’s are quantified in the frequency
domain only.

• The spectral information is not processed. Simply a norm of the perturbation is defined.
It is taken to be the largest amplitude of the harmonics excited by the non-linearities.
In some cases another norm (the quadratic sum of the first few harmonics) was tested
and gave very similar results.

• A significance level of the non-linearity is defined by computing the norm of the spec-
trum in a case where the non-linearity is deemed negligible. We considered a ‘perfect’
LHC only perturbed by the chromaticity sextupoles in a detuned lattice.

• Norms are computed for realistically perturbed LHC’s and perfect BPM’s. This is
used to verify that the significance level defined above is small enough as compared to
the expected dynamic range of the non-linear perturbation.
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• The norm of the spectrum is calculated again in the case of a perfectly linear beam
motion and a non-linear BPM transfer function. The tolerance is set by requiring this
norm to be smaller than the significance level.

In all cases, the amplitude scale of the spectra is normalized to the amplitude of the main
betatron line.

3 The Model used for the Calculations

The LHC model used for this study was the latest available in the database at the moment
(end 2000), i.e. v6.-2 with the error table 9607. Whenever a perturbed LHC is necessary, the
default seed 55 is used, known as a ‘typical’ LHC. Linear imperfections are absent in such a
way that the harmonics are only due to the non-linear fields and not, e.g. to linear coupling
excited by skew gradients. The lattice version 6.-2 is identical to version 6.0 and differs only
by insignificant details from the latest versions. The optics of v6.-2 is slightly different from
that of v6.0 due to the tune split of 4 (now 5). This change is taken to be insignificant for
our purpose. The error table 9607, widely used, includes stronger multipoles than the latest
operational version 9901. This does not seem critical for this analysis, as it is only used for
the estimate of the dynamic range of the spectrum perturbation.

Tracking is performed with MAD8 using three initial conditions in the transverse plane
x, y: mostly horizontal motion (15 degrees), at 45 degrees and mostly vertical motion (75
degrees). The largest norm of the three spectra is retained. The tracking is carried out over
a typical observation period of 1000 turns (optimistic in practice: the decoherence may only
allow a few hundred turns). This is only a few synchrotron periods and 4D tracking was
used. The harmonic content of the spectrum of the motion is therefore slightly less rich, in
the absence of feed-down of e.g. b5 with the off-momentum orbit. This seems safe for our
goal which is to specify the non-linearity of the BPM’s to be smaller than that of the beam.

4 Significance Level of the Non-Linear Perturbation

We take as an axiom that the effect of the lattice sextupoles in the perfect LHC lattice on
the detuned optics at injection perturbs in a negligible way the beam dynamics. Dynamic
aperture calculations and exact scaling show indeed that the dynamic aperture is about
28σ. At collision energy after β-squeeze, it even reaches about 70σ [10] thanks to the
adiabatic shrinking of the emittance, in spite of the stronger sextupoles. This hypothesis
seems confirmed by the experience that normal conducting storage rings are easy to handle
at injection from the point of view of single beam dynamics.

The norm of the harmonics in these conditions are given in table 1. The largest harmonic
corresponds to the third order resonance (1,2) but the (3,0) is only slightly less excited. We
conclude that the significance level for the non-linear motion is at least 3% of the main peak.
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5 Dynamic Range of the Non-Linear Perturbation in

a realistic LHC

To be consistent with the LHC design assumptions, we have to take into account the safety
factor of 2 implemented in the dynamic aperture studies. The distortion of the motion
at 5σ in the real machine is deemed to be modelled by a 10σ oscillation in the tracking
model. We have tracked one instance of a perturbed LHC at injection, namely seed 55
which represents an ‘average’ LHC. Several cases were considered differing by the betatron
tunes and a ‘typical’ fault. The betatron tunes were varied in a reasonable range to change
the sensitivity to resonances. The fault was such as to enhance the sensitivity to the 3rd
order resonances, close to the working point:

• (1) the nominal perturbed machine seed 55,

• the same machine with other betatron tunes: (2) .31/.32, (3) .29/.30, (4) .27/.32,

• (5) the nominal perturbed machine seed 55 where the spool piece circuit b3 in arc 12
is faulty and the resulting chromaticity corrected by the lattice sextupoles.

Case Amplitude
1σ 5σ

Perfect Injection 0.7 3.5
LHC & BPM’s Collision 0.6 3.1

Perturbed (1) 20
LHC (2) 100
& (3) 100
Perfect (4) 12
BPM’s (5) 40

Perfect LHC & ±1500µm 1
Imperfect ±500µm 0.07 0.3
BPM’s ±250µm 0.04 0.2

Table 1: Norm of the harmonics of the transverse spectrum

The results in table 1 show that a resolution of a few percent of the main peak is indeed a
small fraction of the dynamic range.

6 Fake Harmonics due to a Non-Linear Transfer Func-

tion of the BPM’s

The dominant perturbation of the LHC BPM transfer function is third-order in the measured
position [11]. The largest part is corrected hardware-wise in the BPM normalizer. The
hypothesis made is that the residual is still mostly third-order in the measured position.
This is grosso-modo observed in the first few prototypes and is assumed in the following.
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The on-line calibration system of the BPM enforces an exact transfer function at three beam
amplitudes: -A, 0, +A, where A is the BPM aperture (about 24 mm). The transfer function
after calibration is therefore given by:

xmeasured = xtrue + αx3
true − αA2xtrue (1)

The peak deviation from linearity ∆̂ is related to the third-order coefficient α by:

∆̂ =
2

3
√
3
αA3 (2)

The deviation from linearity after calibration for ∆̂ = 250µm is shown on figure 1. Assuming
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Figure 1: Deviation from linearity in the BPM transfer function versus beam amplitude in
mm

a perfectly linear beam motion, the effect of the non-linearity of the transfer function is
studied again by computing the norm of the harmonics of the Fourier transform of the
measured motion. The results are summarized in table 1. In all cases, the closed orbit is
assumed to be at its maximum (4 mm), thereby yielding the worst case for the non-linear
distortion.

It turns out that a non-linear perturbation of the BPM transfer function by as much as
± 1500 µm produces a norm of the harmonics well below the significance level identified
in section 4. A fifth-order perturbation would produce an even weaker perturbation as the
peak distortion occurs at a larger beam amplitude.

7 Conclusion and Specification

The level of significance of the distortion of the transverse spectrum is established by tracking
a perfect LHC, only perturbed by the lattice sextupoles. Table 1 shows clearly that the fake
harmonics produced by the non-linearity of the BPM transfer function are still well below
significance for distortions of the transfer function as large as ± 1500 µm (over its full ± 24
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mm range). The robustness stems from the multiplicative nature of this non-linear ’noise’.
This is less demanding that the former requirements by a factor 30 or more. The BPM
technology allows in fact a significantly better linearity than the quoted requirement from
beam dynamics. We therefore tighten the specification of the non-linearity to ± 500 µm
over the full amplitude range. At the present stage of design, it seems that the LHC BPM
system will exceed possibly significantly this requirement [12].
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