

Specification of the LHC BPM System

LHC-BPM-ES-0004 prepared by Jean-Pierre Koutchouck

checked by the BI-specification team:

O. Bruning SL-AP; C. Fischer SL-BI; JP Koutchouk SL-BI; JJ Gras SL-BI; R. Schmidt AC-TCP; J. Wenninger SL-OP

identify measurement scenarios:

range of bunch parameters and beam patterns

• glossary: define what is meant by 'precision'

resolution; offset; scale error; non-linearity

[JJ Gras and JP Koutchouk; SL-Note-2001-039]

select a beam observable

list all beam parameters which can be derived from the observable and rate their usefulness and potential

describe measurement procedures

select the beam parameters which are most interesting for the machine operation and performance

derive a BPM specification from the above list of measurement procedures

Beam Observables

single pass trajectory

TR

what needs to be measured with a single pas trajectory what are potential extended applications

beam oscillations sampled at one or several locations

TR

closed orbit measurements

CO

Trajectory and Oscillation Cases

Parameters	Use	Symbol
trajectory	visual inspection	TR1
single pass trajectory	beam threading	TR2
	close trajectory on itself	TR3
injection error	subtract trajectory from CO	TR4
momentum error	average 1. turn trajectory	TR5
focusing errors	cell to cell trajectory	TR7
local chromaticity	cell to cell trajectory $+\delta_p$	TR8
transverse spectrum	driving terms	TR 11
fast tune measurement	FFT	TR12

Closed Beam Orbit Cases

Parameters	Use	Symbol
closed orbit	visual inspection	CO1
closed orbit	orbit correction	CO2
local orbit at critical point	s orbit stabilisation	CO3
	collision steering	CO4
closed orbit at injection	injection correction	CO7
momentum error	average closed orbit	CO8
dispersion	closed orbit $+\delta_p$	CO9
optics model	measure β and μ	CO11
measure multipole error	feed down	CO13/CO14

Beam Parameters I

bunch charge equivalent to proton pilot bunch

Beam Parameters II

- → threading; 1. and 2. turn closure
- → momentum adjustment
- closed orbit adjustments
- collimators are positioned

increase beam intensity to facilitate measurements:

intermediate beam parameters \longrightarrow final orbit correction

final collimator settings

→ safe injection into a well adjusted machine

Beam Parameters III

intermediate beam parameters:

→ intensity should be upgradable to nominal beam parameters

→ bunch structure should not prevent long-range beam-beam

→ should be quick and easy to be produced by the injectors

▶ should provide precision close to the one for nominal operation

intermediate beam parameters:

Assuming coarse setting of the collimators and decent we can increase the total intensity to approximately

(distributed losses only, increased heat reserve in He)

$$\rightarrow$$
 N = 2.5 • 10¹² protons

→ 1% of nominal intensity

► 30% of nominal PS batch intensity (injected bunch train)

Intermediate Beam Parameters

72 intermediate bunches: $N = 3.0 \cdot 10^{10}$ protons / per bunch

Intermediate Beam Parameters

24 nominal bunches:

```
N = 1.1 \cdot 10^{11} protons / per bunch
```


Beam Parameters V

summary of beam types:

Beam	# Bunches	#Charges/ Bunch	Bunch Spacing
pilot	1	$5 \cdot 10^9$	88925ns
intermediate 2	25 72	$5 \cdot 10^9 \longrightarrow 1.1 \cdot 10^{11}$	25ns
intermediate 7	25 24	$5 \cdot 10^9 \longrightarrow 1.1 \cdot 10^{11}$	75ns
nominal 25	2808	$1.1 \bullet 10^{11}$	25ns
nominal 75	936	$1.1 \cdot 10^{11}$	75ns
ultimate	2808	$1.7 \bullet 10^{11}$	25ns
TOTEM	36	$1.1 \bullet 10^{11}$	2470ns
Pb Ion	608	$5 \cdot 10^9$	125ns/100ns

Specification Criteria I

mechanical aperture: $\epsilon_n = 3.75 \cdot 10^{-6} \text{ m} \longrightarrow \sigma = 1.2 \text{ mm}$ at injection energy collimator jaws at 7σ and 8.2σ → $\boldsymbol{\Theta}$ -beat < 21% (25%) closed orbit (horizontal and vertical) < 4mm (3mm at 7TeV) • parasitic dispersion: $\Delta D_{x,y} < \frac{\beta_{x,y}}{\beta_{F,QF}} \cdot D_{x,QF} \cdot 0.3 (0.28)$ • momentum spread: $\Delta p < +/-1.0 \cdot 10^{-3} (0.36 \cdot 10^{-3})$ p_0 momentum deviation: $\frac{\Delta p}{2} < \pm 2.0 \cdot 10^{-3} (0.5 \cdot 10^{-3})$ \mathbf{p}_0

collimator positions:

- operation with collimators at all operation modes:
 - collimator positions: $n_1 = 7\sigma; n_2 = 8.2\sigma$

dedicated collimators for injection protection: collimator positions: $n_2 < n_{col,inj} < MA(MB)$

 \rightarrow collimator positions must be controlled within 0.2 σ

Functional Specification I

distribution in the 2 machines:

- arc BPM's: each arc quadrupole is equipped with a horizontal and vertical BPM→ 45°sampling
 - \rightarrow peak CO < 4mm [J. Miles LHC Project Note 76]
 - identical misalignment for successive QF and QD[LEP]

measurement of β -beat in a 90° lattice

[P. Castro-Garcia, CERN SL/96-70]

Functional Specification I

distribution in the 2 machines:

triplet BPM's: each triplet quadrupole is equipped with a horizontal and vertical BPM

LHC: small phase advance but large change in β

- → Q1: measurement of crossing angle [S. Fartoukh]
- → Q2: measuring the maximum orbit in one plane

Q3: measure the orbit maximum in the other plane

Optic Functions at the IP's

• *the collision optics in IR5:* $\beta^* = 0.5$ meter

Functional Specification I

distribution in the 2 machines:

D1/D2: two BPM's are installed in the long drift space between D1 and D2

LHC: small phase advance but large change in β

tune accurately the crossing angle bump

decouple the closed orbit correction in the rings
and the common sections of the two beams

IR5 Crossing Angle Bump

mixed crossing angle scheme: 30% independent + 70% common

Functional Specification I

distribution in the 2 machines:

- collimator regions: BPM's are installed on each side of each warm quadrupole
 - (e.g. at the drift spaces were collimators are installed)
 - → minimum configuration that allows a linear
 - interpolation of the closed orbit, dispersion and
 - β functions

Functional Specification I

distribution in the 2 machines:

special BPM's:

if all BPMs do not turn out to be equally performing the 'best' BPMs will be installed in key positions

→ at the junctions between arc and insertions

(BPMs with lowest non-linearity)

at the junctions of the two rings
(BPMs with largest accuracy)

Functional Specification II

time resolution of the BPMs:

- bunch to bunch (40MHz):
 - possibility of measuring beam parameters over one batch (detuning with amplitude in 1 shot, beam-beam etc)

→ required only at a few locations of the machine: Q4, Q6, Q7

- batch to batch (140kHz):
 - injection constraints

(injection fluctuations / drifts)

Functional Specification III

transverse dynamic range of the BPMs:

	closed	momentum	x-ing	beam	range	range
	orbit	deviation	angle	σ	1	2
standard	+/- 4	+/- 2		+/-1.2	+/-15	+/-18
BPM's	mm	mm		mm	mm	mm
triplet	+/ - 4	+/- 1	+/- 7	+/-1.5	+/-23	+/-27
BPM's	mm	mm	mm	mm	mm	mm

Functional Specification IV

longitudinal dynamic range of the BPMs:

the BPM reading must not be sensitive to the bunch length for:

 $0.2ns < t_{bunch} (rms) < 0.8ns$

Functional Specification V

dynamic range of the BPMs:

high precision:

 $3 \cdot 10^{10} < N_{\text{bunch}} < 1.7 \cdot 10^{11}$

Functional Specification VI

precision:

$$\mathbf{x}_{\text{measured}} - \mathbf{x}_{\text{true}} = \Delta + k\mathbf{x}_{\text{true}} + \boldsymbol{\psi}_{\text{true}} \sum_{k=2}^{\infty} \sum_{j \leq k} \alpha_{kj} \mathbf{x}_{\text{true}}^{k-j} \cdot \mathbf{y}_{\text{true}}^{k} + \boldsymbol{\varepsilon}$$

- Δ : offset
- k: scale error
- ψ : roll error
- α : non-linearity
- **ɛ**: noise

- uncertainty -> rms error
- peak error = $2 \cdot \text{rms error}$
- in calculating tolerances the maximum perturbation is retained

Functional Specification VII

Measurement	pilot	accuracy	scale	offset	non-linear	resolution
TR4	*	500µm	+	NR	+	+
TR5		250µm	+	NR	+	+
TR7	*	400µm	+	NR	+	+
TR8	*	50µm	4%	NR	+	+
TR 11			NR	NR	500µm	50µm
CO2	*	500µm	+	250µm		+
CO3		20µm	NR	NR	NR	+
CO7			+	100µm	200µm	1000µm
CO 14		10µm	+	NR	+	5µm

Functional Specification VII

precision:

Goal	Coarse (pilot pulse)	high (other than pilot)	
scale error	not relevant	+/- 4%	
roll error	not relevant	+/- 1 mrad	
offset	+/-750 μm	+/-100 μm arc / 30 μm IR	
no-linear	not relevant	200µ m / (500µ m R1)	
resolution	200 µ m	50 µm traject / 5µm orbit	

Functional Specification VIII

repeatability and reproducibility:

bunch to bunch (due to transients in the BPM electronics):
+/-400 µm for the coarse accuracy (-> 10% of closed orbit)
+/-100 µm for the coarse accuracy (-> 0.1 σ; pacman bunch)

run to run:

 \rightarrow +/-100 µm for coarse collimator settings (-> 0.5 σ)

 \rightarrow +/-20 µm for precise collimator settings

Functional Specification IX

response time:

Measurement	Information block	Response	Methods	
single shot	1 orbit / trajectory	1 sec	TR2,3,5,7,11 CO2,5,8	
difference	2 orbits/ trajectories	2 sec	TR4,8; CO9	
repeated diff	n orbits/ trajectories	n sec	TR9	
monitoring	orbit	5 msec	TR7,8,11; CO2	
snapshot (224)	orbit / trajectory	2 sec	CO9,13,14	