Beam Loss Monitors, Specification

- BLM main scope and challenges
- types of BLM Collimation, Special, Arc
- Sensitivity and Time Resolution
- Summary

largely based on work of

Jean Bernard J., Bernd D., Rüdiger S., et al.

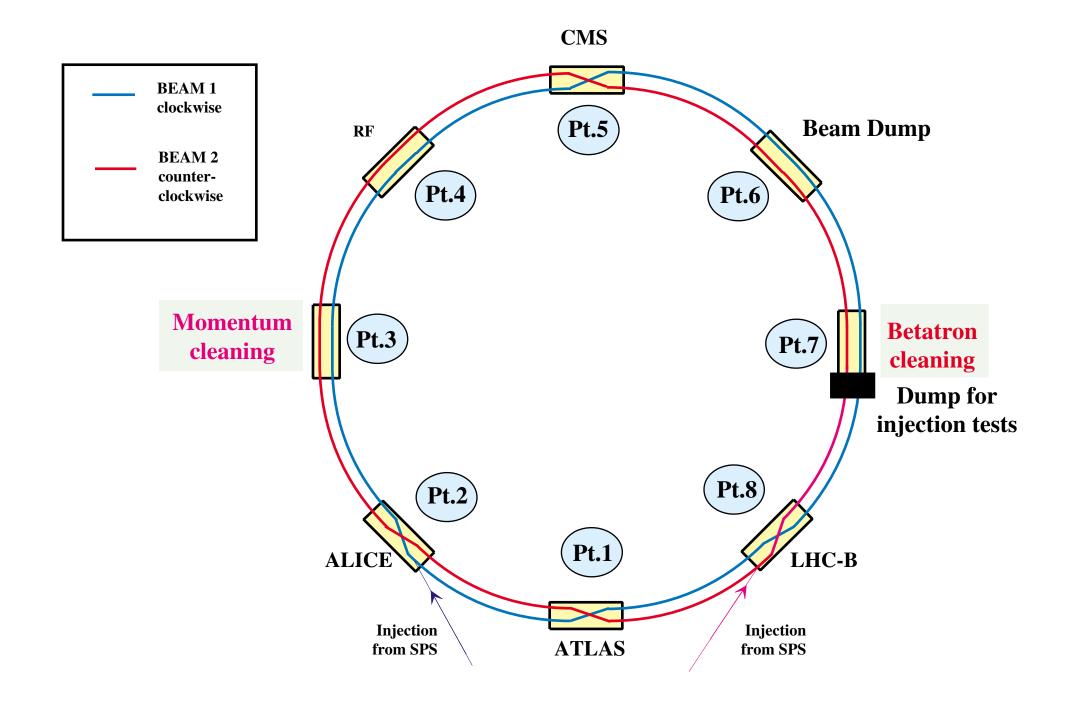
and discussions in BIreview team with J.J.Gras, JPK et al.

Main scope and challenges

• substantial energy stored in LHC beams,

uncontrolled loss would do major damage nominal LHC 7 TeV, 1.07 A (6 x 10¹⁴ prot., 10¹¹/bunch) in beam power, this is about 12000 • LEP2 (100 GeV, 6 mA), 18 • LEP2 in single bunch power (4x10¹¹ el. / bunch) 50 • SPS (450 GeV, .33 A),

80 • HERA (920 GeV, .096 A)


• major energy stored in superconducting magnets, avoid quenches

beam loss detection is a very important issue for the LHC

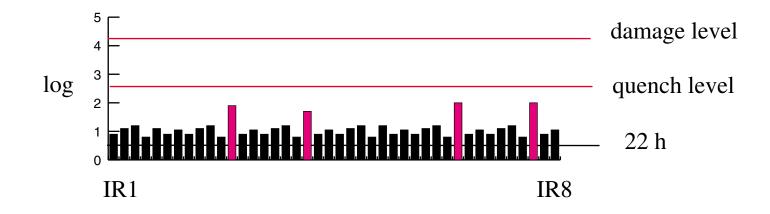
realiable machine protection dump beam before any damage and to avoid quenches

• challenge: good protection but also dump only if really necessary

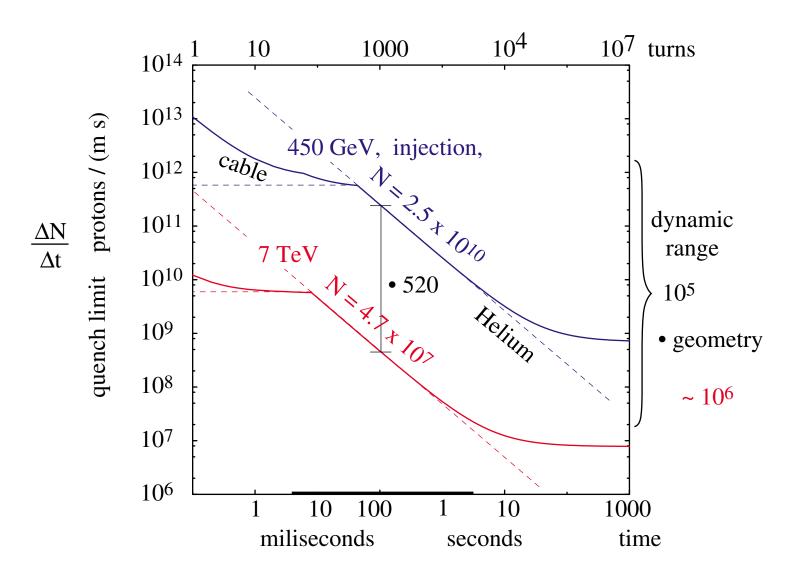
--> absolute calibration in terms of quench level

Different classes of Beam Loss Monitors

with different requirements from different anticipated losses and use different thresholds, geometry, calibration (monitor itself may well be the same)


- BMLC Collimators in cleaning sections (warm except dfba) 8 x 2 in IR3 (β - collimation 1 prim, 6 sec, 1 dfba start of cold section), 21x 2 in IR7 ($\Delta p/p$ - collimation, 4 prim, 16 sec, 1 dfba)
- BMLS Special, large β around experiments IR 1,5, 2,8 and near dump devices (TAS, TAN in IR 1,5) and injection 2,8 dump (IR6)
 7 in IR2 and 8 with Exp. (2BLM) . and inj (5 BLM)
 8 in IR1 and IR5 with Exp. (2BLM) and TAS, TAN
 6 IR6 dump msd, tcdq, dfba
- BMLA all other locations, arcs and dispersion suppressors 392 x2 (all main quads) (90 % BLMA of in total 900 - 1000)

Consider two complementery situations


 Basically good conditions: orbit, optics, standard collimator settings one parameter bad or going out of control (magnet failure) (can go quickly, warm D1 dipole trip, 2 mm in 5 turns; kicker problems, ~1 turn) seen with BMLC

2) Generally poor or not well known conditions, non-standard conditions, like setup.
likely reduced collimation efficiency → BLMS
In addition possibility of local problems vacuum bumps, orbit bumps, aperture reductions.
Complete coverage with loss monitors → BLMA

- 1) BLMC, S protection and guide to operation under normal conditions
- 2) BLMA protection for abnormal conditions with local problems
 - continuous, real time (some sec.) updating normalized display

• post mortem info (buffer last 100-1000 turns + rates for last seconds)

dump if	in last 10 sec	ΔN / Δt
450 GeV	$N > 2.5 \ge 10^{10}$	$> 7 \ge 10^{11}$
7 TeV	$N > 4.7 \ge 10^7$	$> 7 \ge 10^9$

Main Requirements

	time resolution	
BLMC	1 turn (89 μs)	required to be always all working
BLMS	1 turn	
BLMA	< 2.5 ms	(drive speed / loss rise for local orbit bumps)

absolute calibration: aim for knowledge to factor 2 in quench level dynamic range ~ 10⁶

distinguish losses from ring 1/2

also foreseen: a bunch to bunch loss monitor (not in dump/protection) in cleaning section

The calibration issue

How to obtain an absolute (quench threshold) calibration for about 1000 BLM ? Moreover, calibration: function of energy and loss duration

Non-trivil task, choose BLM hardware/length/positioning in order to / for

- minimize different types of monitors and geometries
- good a priori knowledge from simulation and choice of BLM system, tests in SPS

Calibration with beam:

- calibration vs lifetime in collimator setting (comparable to LEP tail scans) only possible in cleaning sections, BLMC
- rest: check quench levels for BLMS and representative subset of BLMC how ? (local bumps - restricted to injection ?, really quench in some cases ?)

Summary

- good Beam Loss Monitoring, quench and damage protection essential for LHC
- best sensitivity/dynamic range/resolution (time res. down to 1 turn) at collimation and few sensitive places BLMC,S
- full coverage of all the rest (BMLA each quad), with ms resolution,

high dynamic range $\sim 10^6$

major challenge: knowledge (absolute calibration) in terms of quench level (E,t)
 (minimize different geometries, good uniformity and stability and a priori knowledge from simulation,
 + tests with beam)