A preliminary Specification for the Collimation system of LHC

BI review, 20th Nov 2001

J.B. Jeanneret

/Text/LHC/2001/coll/bi_rev_nov/rev.tex

Outline

- Collimation of the beam halo (the primary goal of the system)
- Number and kinds of collimators
- Specification data (not exhaustive)
- Single pass losses and machine integrity
 - injection oscillations
 - injection kicker errors
 - dump kicker errors
- Strategical considerations

Needs and basic parameters

To protect the machine aginst beam losses, we need :

- β -collimation never questioned
- δ_p -collimation

recurrently questionned, but mandatory (RF capture at injection, Longitudinal lifetime at top energy)

- primary and secondary collimators (machine aperture : $10\sigma_{\beta}$ both arc@inj and low-beta@collision)
- transverse collimation location n₁ < 7, n₂ < 8.5 (normalised) (see Ralph's talk)

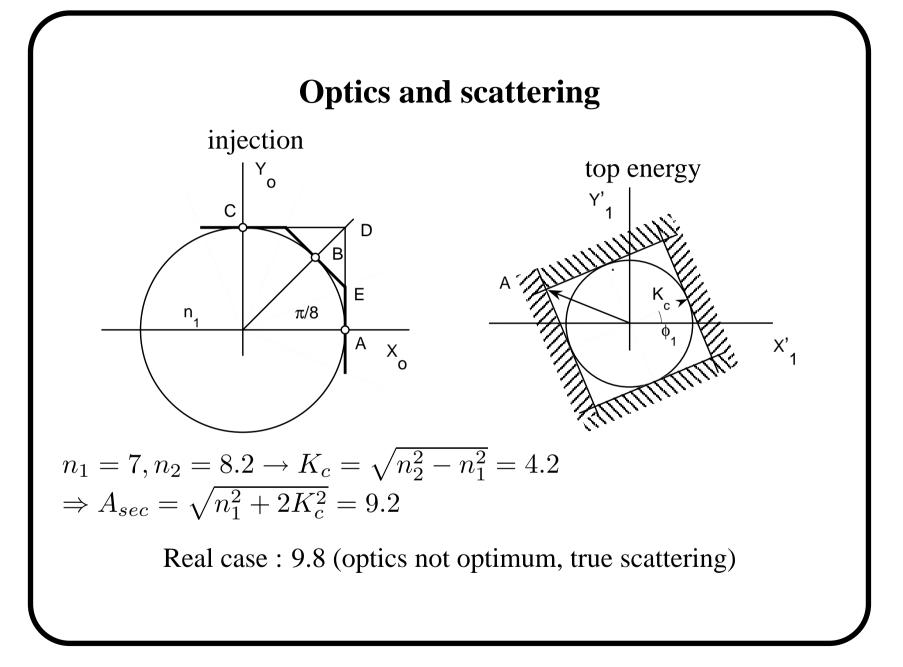
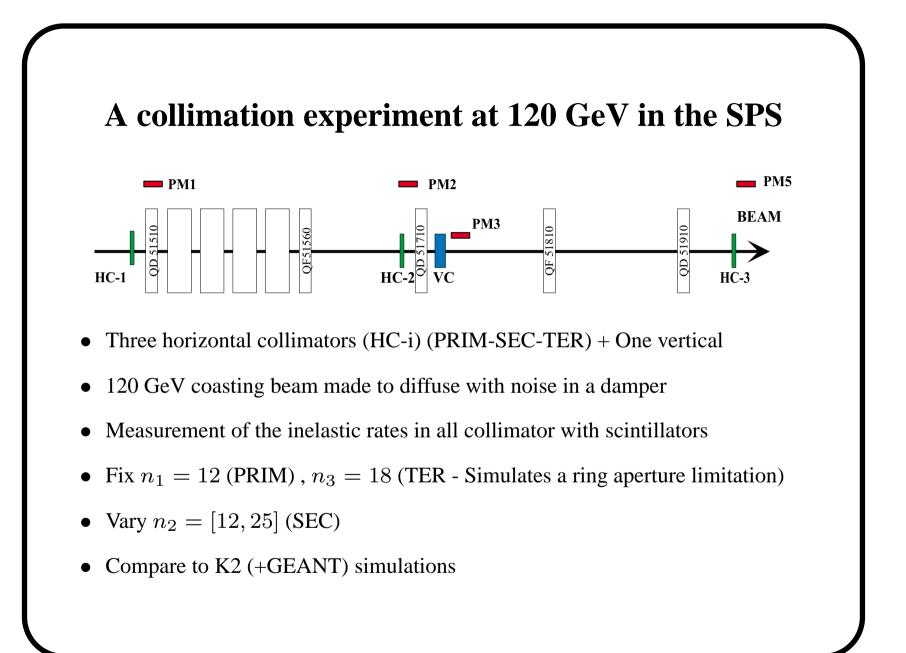
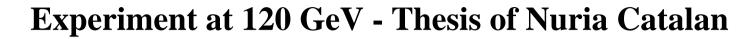
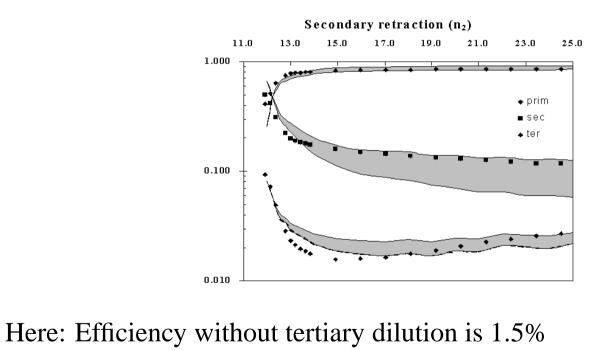


Table 1: Correlated phase advances μ_x and μ_y and X - Y jaw orientations α_{Jaw} for three primary jaw orientations α and four scattering angles ϕ with $\mu_o = \cos^{-1}(n_1/n_2)$.


α	ϕ	μ_x	μ_y	$lpha_{ m Jaw}$	
0	0	μ_o	-	0	mom. coll.
0	π	$\pi - \mu_o$	-	0	mom. coll.
0	$\pi/2$	π	$3\pi/2$	μ_o	mom. coll.
0	$-\pi/2$	π	$3\pi/2$	- μ_o	mom. coll.
$\pi/4$	$\pi/4$	μ_o	μ_o	$\pi/4$	
$\pi/4$	$5\pi/4$	$\pi - \mu_o$	$\pi - \mu_o$	$\pi/4$	
$\pi/4$	$3\pi/4$	$\pi - \mu_o$	$\pi + \mu_o$	$\pi/4$	
$\pi/4$	$-\pi/4$	$\pi + \mu_o$	$\pi - \mu_o$	$\pi/4$	
$\pi/2$	$\pi/2$	-	μ_o	$\pi/2$	
$\pi/2$	$-\pi/2$	-	$\pi - \mu_o$	$\pi/2$	
$\pi/2$	π	$\pi/2$	π	$\pi/2 - \mu_o$	
$\pi/2$	0	$\pi/2$	π	$\pi/2 + \mu_o$	


Real LHC optics: only an approximation of this perfect case

Efficiency as product of : tertiary flux/input flux (here old simulation, see Ralph's talk) and dilution of the tertiaries in the arc


Using: Primary collimator $n_1 = 6 \sigma_\beta$ and secondary $n_2 = 7 \sigma_\beta$

	20	10	8	
	Inefficiency [1/m]			
.45 TeV	6×10^{-6}	3×10^{-5}	2×10^{-4}	
7 TeV	5×10^{-6}	2.5×10^{-5}	1×10^{-4}	
	Margin factor			Loss case
.45 TeV	120	25	3.5	3% off bucket at ramping
7 TeV	300	60	15	$ au_{ m beam}=40 m hrs$

- Dots : data , Grey areas : K2 simulation, $n_1 = 12$, $n_3 = 18$, $\epsilon_n = 3.75 \ \mu m$
- Multiturn effect clearly visible
- Worst relative difference data/simulation : 40%

Mechanical tolerances

Based on old simulations (TT+JBJ)

but more systematic ones are going-on (Ralph Assmann)

Basic reference number: Relative normalised retraction PRIM/SEC

 $\Delta n = n_2 - n_1 \simeq 1$ with $\sigma_\beta \simeq 250 \ \mu m \ (7 \text{TeV})$ (1)

- mechanical+survey ~ 150 μ m r.m.s (Present offer) \rightarrow a priori, no need of angular control, see Ralph's talk
- deformation under heat $\sim 30 \ \mu m max$ (spec.) requires heat input, steady and transient, see below
- CO stability $\sim 20 \ \mu m \ rms$ (7 TeV) (spec.)

Kinds of collimators

- Low Z better (efficiency, energy density vs. impacting flux)
 → OK for primary collimators: Al
- Secondary ones must absorb → Be, Al : 160 cm ,Cu : 60 cm (4 abs. length) compromise with mech.precision/simplicity → Cu but stategy against destructive events need more work, see below
- Present choice :

PRIM :	Aluminium	20 cm
SEC :	Copper	50 cm
SINGLE PASS, inj+exp :	Copper (Al?)	100 cm
SINGLE PASS, dump :	Low Z	to be studied

Number of collimators per beam and total

Function	Prim	Sec	Single Pass	beams
β -coll.	4	16	-	2
δ_p -coll.	1	6	-	2
IP2,8-inj	-	-	2	2
IP1,5-exp	-	-	4	2
DUMP	-	-	2?	2
Total:	10	44	12 + 4?	-
Total tanks:	66 + 4?	(all kinds)		
Total motors:	132 + 8?	(all kinds)		

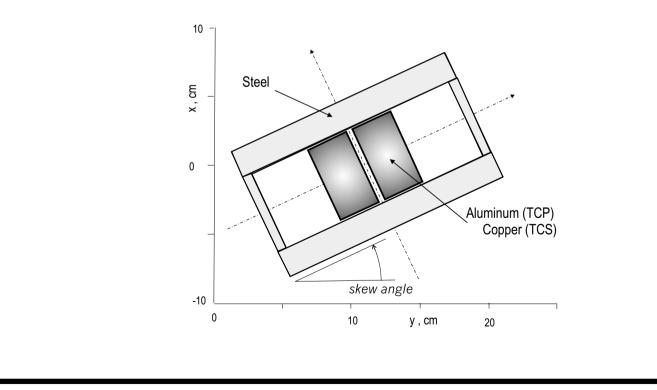
? : low-Z against dump failure, to be studied /decided

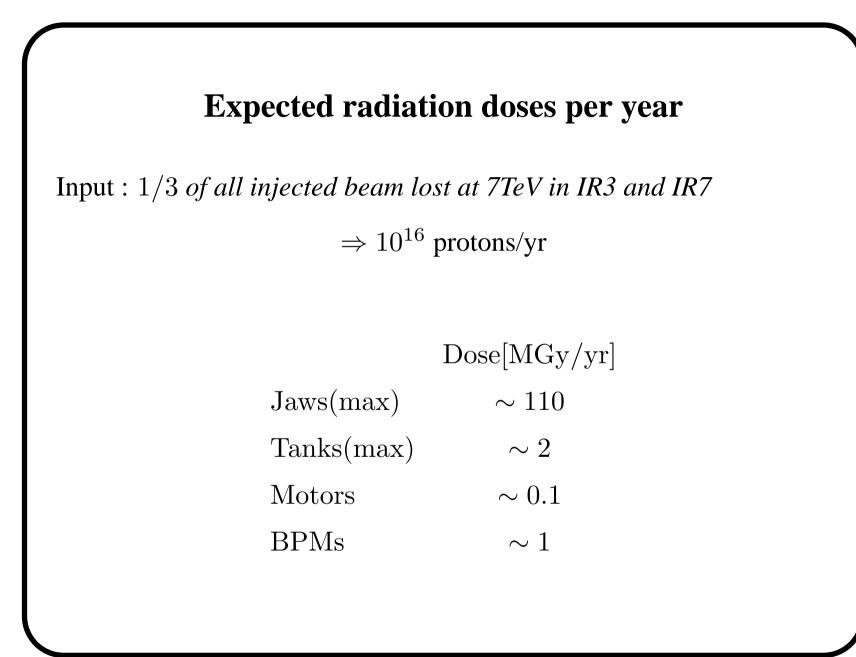
Steady power deposition - Momentum cleaning

Normalised to 3×10^9 protons/s captured in the insertion or : beam lifetime of $\tau_{\text{beam}} = 40$ hours ($\rightarrow \tau_{\mathcal{L}} < 20$ hours) (Target value of yellow book)

Collimator	Injection P [W]	Collision P [W]	
TCP1	0.45	3.2	
TCS1	19	606	$(\tau_{\rm beam} = 4 \; {\rm hr} \rightarrow 6 \; {\rm kW})$
TCS2	14	158	
TCS3	13	160	
TCS4	3.8	69	
TCS5	3.0	51	
TCS6	1.2	24	

Open issue: What shall be the target value for τ_{beam} in collision? At injection : $\tau_{\text{beam}} = 4$ hr OK


Power and energy deposition


- Energy and power maps studied by SL/AP and IHEP/Protvino (partly done, future is subject to approval of a new contract)
- Heat diffusion and extraction by EST, including thermal deformations (*deadline worries, to be clarified*)

Collective effects

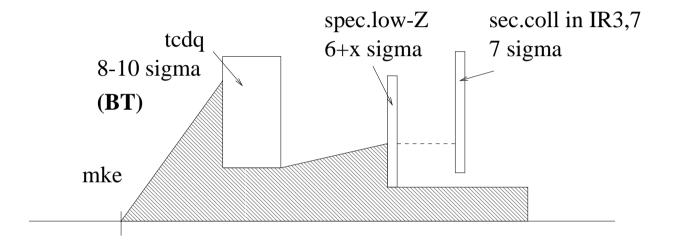
- Need tapering Need longer tanks ($\simeq 20$ cm), no major difficulty
- Request for longitudinal RF contact More annoying (unless distance to wall small enough not yet quantified)

(cut view, beam orthogonal to drawing, drive/motor not shown)

Destruction limits - Based on simul. by Igor Baishev

Margin on destruction case : $\sim 30\%$ Number of bunches computed with 1 bunch $n_p = 1.05 \times 10^{11}$ Impact angle : $\pi/2$, straight on

	Copper	Aluminium	Berylium
Nb of bunches	N_b^d	N_b^d	N_b^d
Injection	5	44	
Тор	0.05	0.5	5
(Top, grazing/arc	0.4)	-	-


- Injection oscillations
- mis-fire of injection kicker, TDI does the big job, supplemented by two 1m-long collimators (Cu,Al) in IR2,8 *kicker sweep error: 220 bunches on TDI*, ≤ 4 on collimator.
- mis-fire of dump kicker: *More difficult*

Injection oscillations

- Collimation in IR3 and IR7 cannot protect the ring from bad injections in IR2 and IR8 during the first turn
- 5 bunches out of 240 are destructive
- The TDI protects only from MKI errors (Vertical, one phase)
- Need a deep collimation near the end of the transfer lines
- Discussed at Chamonix 2001: *still under study*
 - Cut at 5+x σ_{β} H and V
 - At least two phases (0, $\pi/2$)

Recently opened issue: MKE module erratic trigger

More frequent than earlier expectations (\sim once per year) Need to protect the secondary collimators (in addition to the arc)

- Density of the sprayed beam: 3-4 bunches/ $\sigma_{\beta} \rightarrow$ kills everything except low-Z material
- Special low-Z absorbers (Be, ceramic) to be studied (IR6 and/or PRIM-V)
- Who shall study this new device (BI,BT?)
- How many do we need (1,2 per beam?), where to locate them

Considering dump erratic triggers

- *Either* : Replace some collimators (Al,Cu) by lower Z material *then compromise with*
 - Performance, precision
 - Mechanical simplicity, reliability
- *Or* : Add a few low-Z absorbers, to protect the SEC-collimators

Requires

- BT, BI, AP coordination
- Fix a boundary between BT- and BI-like absorbers/collimators

Strategical considerations - II

Destructive effects are possible with small fractional losses

Collimation is not a marginal system (unlike in former machines)

- Uncontrolled operation can be destructive
- Collimators alone cannot grant good and safe operation
- Defining adequate Protocols of operation is an outstanding task Many (all?) groups must be involved

Status of the functional specification

- What is done :
 - Collimation theory, Optics, Insertion layout
 - Quench limits, Efficiency calculation
- What is partly done :
 - Robustness studies of optics
 - Damage limits
 - Damage scenarios
 - Heat and power maps
- External data :
 - Update of beam parameters, fix upper limits for lifetime (LCC?)