

M. Placidi

on behalf of

the **CERN-LBNL** and the **CERN-LETI**

COLLABORATION PROJECTS

Massimo Placidi

BI Review, 19–20 November 2001

1

Historical & Concepts

Purposes of Tests

MARS Simulations

Ionisation Chamber H4 beam Test Sept. 2001

CdTe Irradiation Tests

Future Plans

Massimo Placidi

BI Review, 19–20 November 2001

Concepts and Developments

- Instrument TAN (TAS) Absorbers at LHC High Luminosity IPs TAN only : ⇒ Luminosity TAN and TAS : ⇒ Luminosity + Crossing Angle + IP Position
- @ TAN: Detect Flux of Neutral particles from IPs
 @ TAS: Detect Flux of Charged particles
- **Detectors**

Ionisation Chamber / LBNL project CdTe Solid state / SL-BI/LETI project **Prototype Detector Tests**

- Simulate Electro-magnetic Showers initiated by Neutrals in TAN
- Modular Fe Absorber on H4 SPS 300 GeV *p*-Beam Prototype IC @ Shower Maximum
- Test Detector Sensitivity and Speed
 Compare Detector Performance to Design
 Compare signal amplitudes with MARS predictions

Massimo Placidi

BI Review, 19–20 November 2001

Schematic of setup in SPS H4, Sep. 2001

Photo of the setup in SPS H4 300 GeV proton beam, Sep 2001

Hadronic/em showers

- The hadronic energy incident on the TAN per pp interaction in LHC is ~ 750 GeV
- The flux of mips at the shower maximum in the TAN is ~ linear function of incident hadron energy
- => single 300-450 GeV protons from SPS can be used for realistic tests of response of detector to single pp interactions in LHC
- The MARS code (N. Mokhov) is used for shower simulations of LHC and SPS H4 test beam conditions

- Understand the energy flow in hadronic/em showers
- Understand the energy deposition by hadronic/em showers
- Estimate the ionization chamber signal from the flux of ionizing radiation

Shower energy is carried predominantly by hadrons

Primary proton energy = 450 GeV

(a) Hadrons

(b) Charged leptons and photons

MARS Simulations M. Placidi and W. Turner

The charged particle flux (and :. energy deposition) is dominated by leptons (mostly e^++e^-)

6

12-13 Nov. 2001

M. Placidi and W. Turner

Ionization energy deposition, $E_p = 300 \text{ GeV}$

Flux and mean energy of particles near the shower maxima of 300 and 450 GeV primary protons

(a) 300 GeV proton			(b) 450 GeV proton		
particle	Flux per proton	Mean energy, MeV	particle	Flux per proton	Mean energy, MeV
e	84.6	73.0	e	130.2	75.2
e+	55.4	108.0	e ⁺	85.9	109.8
π^{-}	5.0	5,376	π^{-}	6.9	6,500
π^+	5.7	6,440	π^+	8.0	7,820
K⁻	0.50	6,892	K⁻	0.74	7,988
K^{+}	0.59	8,501	K ⁺	0.78	10,812
р	3.4	35,795	р	4.4	39,031
n	17.0	1,970	n	23.2	2,121
γ	1,738	14.4	γ	2743.5	14.0
All chg.	155.2.0	-	All chg.	237.0	-

Particle yield at the shower maximum is nearly a linear function of E_p

MARS Simulations M. Placidi and W. Turner

Ionization equivalent MIPS flux versus shower depth in Fe per 300 GeV proton

Predicted signal at shower maximum in 300 GeV proton beam

- 6 atmos Ar+2% N₂ => 6x97 = 582 electron-ion pairs/cm-mip
- Ten 0.5mm gaps => 0.5x582 = 291 electrons/mip
- 231 mips/p at shower max => 6.7x10⁴ electrons/p
- Transfer function $0.45 \mu V/e$
- Ballistic deficit ~ 3
- Cable attenuation = 20%
- Expected signal

=> 0.5×6.7×10⁴×.45×10⁻⁶×0.8 /3 = 4.0 mV

Fe absorber thickness scan, MARS data normalized to peak of experimental data

MARS Simulations M. Placidi and W. Turner

(1) Status Summary

- Signal and noise requirements have been met
- 40MHz bandwidth for measurement of the luminosity of individual colliding bunch pairs has been met
- Agreement with MARS shower simulations is good
- Behavior of ionization chamber with variation of gas pressure and position in the beam is as expected

Predicted signal at shower maximum in 300 GeV proton beam

- 6 atmos Ar+2% N₂ => 6x97 = 582 electron-ion pairs/cm-mip
- Ten 0.5mm gaps => 0.5×582 = 291 electrons/mip
- 231 mips/p at shower max => 6.7x10⁴ electrons/p
- Transfer function $0.45 \mu V/e$
- Ballistic deficit ~ 3
- Cable attenuation = 20%
- Expected signal

=> 0.5×6.7×10⁴×.45×10⁻⁶×0.8 /3 = 4.0 mV

Waveform averaging improves proton shower S/N ratio

 Pulse height 4.2mV in good agreement with MARS prediction 4.0 mV

Status 40MHz Ionization Chamber

How short does the pulse need to be for 40MHz lumi measurement?

--- in general there is not a simple answer

- Full width < 25 nsec
 - No interference of bunches
- Full width < 25 ns + peaking time
 - No interference at peaks of bunches
- Peaking time < 25 ns
 - No interference of trailing pulses with the peak of the leading bunch in a bunch train

 $V_{peak} \Rightarrow L$

V_{peak} => L

- Subtraction from head to tail of bunch train deconvolves overlap
- Peaking time > 25 ns
 - subtraction from head to tail of bunch train still deconvolves overlap but more involved, accuracy of fit and propagation of noise becomes an issue

Excitation of normal modes of the ionization chamber broaden the current pulse

12-13 Nov. 2001

Status 40MHz Ionization Chamber

A typical proton shower waveform delayed 25 ns and added to itself 10 times

Step 25b

Status 40MHz Ionization Chamber

Synchronous overlay of ten 2.4k event waveforms and the 24k mean waveform

Status 40MHz Ionization Chamber

Ten pulse summation, pulses successively delayed by 25ns

Step 25k

Status 40MHz Ionization Chamber

Successively fit and subtract the leading pulse

Status 40MHz Ionization Chamber

Unzipped and raw peak heights track one another with statistical error

Outlook / CdTe

- CdTe signal response rapidity matches 40 MHz data acquisition
- Sensitivity above 100 electrons per micron/MIP allows simple design
- Irradiation tests up to 10¹⁶ n/cm² demonstrated no significant modification in carrier lifetime
- Performance tests after irradiation up to 10¹⁷ n/cm²
 are being planned

Massimo Placidi

BI Review, 19–20 November 2001

Outlook / Ionisation Chamber

- Signal and noise requirements have been met
- 40 MHz bandwidth for bunch-by-bunch luminosity measurement looks at reach
- Good agreement with MARS Shower simulations and expected signal amplitude
- Performance vs. gas pressure is as expected.

Outlook / Ionisation Chamber: what next

- Parasitic impedances, ground plane capacitance
- Pulse width reduction
- Gas purity monitoring
- More MARS studies:

TAN/TAS Sensitivity to IP Crossing Angle and Transverse Position Longitudinal Magnetic Fields in ATLAS and CMS

- Data acquisition SW, Integration with LHC Operation
- Implement HW and SW for Lumi Optimisation algorithms

/tex/talks/BI/BIrev11_01.ps

Massimo Placidi

BI Review, 19–20 November 2001