

Concepts for IR Absorber Luminosity Instrumentation

> W.C. Turner LBNL

Presented at the CERN Tools for Luminosity Optimization mini-Workshop 15-16 Apr. 1999

Lumi Tools Mini Workshop 15-16 Apr. 1999

Why instrument the IR absorbers ?

 The objective for instrumentation of the IR absorbers is to provide LHC machine operations with a simple, reliable, dedicated device for maximizing luminosity for all operating scenarios

A team has been assembled to address IR absorber instrumentation issues:

- application to storage ring operation
- beam-beam interaction
- detector physics
- radiation effects
- signal processing and data acquisition
- hardware design

P. Datte	J. Millaud
S. Krishnagopal (CAT, India)	D. Nygren
E. Hoyer	D. Plate
P.F. Manfredi	W. Turner

N. Mokhov (FNAL)

Schematic of components in IP1(5), v6.0

- Luminosity instrumentation would be located in the front quadrupole (TAS) and neutral particle (TAN) absorbers

Schematic of TAN and TAS instrumentation

- Fast gas ionization sampling chambers are located near the shower maxima inside the absorbers to take advantage of ;
 - multiplication of the collected charge due to shower production and gas ionization
 - increased sensitivity to the most energetic IP collision fragments, shielding from soft particles
 - negligible impact on lattice space

Lumi Tools Mini Workshop 15-16 Apr. 1999

What can be measured with absorber instrumentation?

- 1. Luminosity
- 2. Beam-beam separation
- 3. RMS beam size
- 4. Beam-beam crossing angle
- 5. Transverse position of the IP
 - Bunch by bunch measurements are feasible
 - Measurement of beam-beam separation can be used in feedback to bring the beams into collision and optimize L
 - Items 1. to 3. can be accomplished with TAN only single element detectors
 - Items 4. and 5. require segmenting the detectors into quadrants and instrumenting the TAS and TAN

- An intentional transverse sweep of one beam introduces a time dependent modulation of luminosity
 - ϵ = error offset amplitude
 - d = intentional sweep amplitude

$$L \approx L_0 - L_0 \frac{\varepsilon d}{2\sigma_*^2} \cos(\omega t - \varphi); \varepsilon, d \ll \sigma_*$$

• Define the detector current

$$I(t) = e\alpha\varepsilon_{det}m\sigma_{inel}L$$

• Integrate to obtain the luminosity and error offset, 0 < t < T, $T = n \frac{2\pi}{2}$

$$L_{0} = \frac{\int_{0}^{T} I(t)dt}{e\alpha\varepsilon_{det}m\sigma_{inel}T}; \qquad \vec{\varepsilon} = -\frac{\hat{e}_{x}\int_{0}^{T}\cos(\omega t)I(t)dt + \hat{e}_{y}\int_{0}^{T}\sin(\omega t)I(t)dt}{\left(\frac{d}{4\sigma_{*}^{2}}\right)e\alpha\varepsilon_{det}m\sigma_{inel}T}$$

Lumi Tools Mini Workshop 15-16 Apr. 1999 W.C. Turner Concepts for IR Absorber Luminosity Instrumentation (1)

- Integration times are sufficiently short to be practical even for the lowest luminosity envisioned (TOTEM)
 - Bunch by bunch measurements increase the integration times by the number of bunches (x2835 for L = 10^{34} , x236 for TOTEM)
 - The practical sweep frequency needed for beam-beam separation measurements (1 Hz ?) will determine the integration time at the highest luminosity

		Integration tir		
L cm ⁻² s ⁻¹	$\frac{\sigma_L}{L} = 0.01$	$\sigma_{\varepsilon}=0.1\sigma_{\star}$	$\sigma_{\psi} = 1 \mu rad$	$\sigma_{a_{\chi}}^{*} = \sigma_{*}$
10 ³⁴	6.2x10 ⁻⁵ /	1.0x10 ⁻³ /	2.55x10 ⁻⁴ /	3.8x10 ⁻³ /
	0.7	11	2.9	42.6
10 ²⁸	62/	1.0x10 ³ /	2.55x10 ² /	3.8x10 ³ /
	7.0x10 ⁵	1.1x10 ⁷	2.9x10 ⁶	4.26x10 ⁷

Bringing the beams into initial collision

- One approach start with a coarse grid map with successively finer mesh followed by application of the beam sweeping method with successively smaller radii
- An extreme example TOTEM, $L = 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$

Domain	Grid size	δL/L	Integration time
			(sec)
\pm 4 σ × \pm 4 σ	2σ	10%	15.5
$\pm 2\sigma imes \pm 2\sigma$	1σ	5%	62.5
Sweep radius		σ_{ϵ}	
1σ	NA	1σ	10
.5σ	NA	.5σ	40
.2σ	NA	.2σ	250
.1σ	NA	.1σ	1000

 Total integration time allowing for two iterations of each beam sweep = approximately 45 min

Lumi Tools Mini Workshop 15-16 Apr. 1999

Layout of TAN ionization chamber

Lumi Tools Mini Workshop 15-16 Apr. 1999

Layout of TAS ionization chamber

Parameters for an ionization chamber module:

Active area(1 quadrant)
Plate gap
No. of gaps
Capacitance/gap
Gas
Elec gap transit time
Bunch freq/Rev freq
Bunch structure
Inel pp int/bunch xing@10 ³⁴
mip per pp int
mip per bunch xing@10 ³⁴
Electron/ion pairs/cm-mip
Ioniz e ⁻ /pp int
loniz e ⁻ /bunch xing@ 10 ³⁴

40mm x 40mm	
0.5 mm	
12	
28.3 pF	
Ar+N ₂ (1%), 760 Tor	r
21.7 nsec	
40.079 MHz/11.245	5 kHz
12x(3x81+2x8+38) =	= 3,564
20	
268	
5.35x10 ³	
97	
1.3x10 ³ (1 gap)	1.56x10 ⁴ (12 gaps)
2.6x10 ⁴ (1 gap)	3.1x10 ⁵ (12 gaps)

Dynamic range

- The magnitude of charge collected in a single pp interaction is adequate for pulse shaping, digitizing and acquisition (see companion presentation by Datte and Manfredi)
- If the data are accumulated bunch by bunch, the dynamic range needed for front end electronics is a factor of ~ 40 to cover luminosity from <u>an arbitrarily low value</u> up to 10³⁴ cm²sec^{-1 bb}
- The dynamic range increases linearly with the bunch accumulation factor

US LHC ACCELERATOR PROJECT

brookhaven - fermilab - berkeley

- Radiation deposition and activation have been studied in great detail with the MARS code
 - power density ~ 3 W/kgm at ionization chambers
 - power density < 10⁻⁵ W/kgm at front end electronics located on the outer radius and at the back of the TAN
- Although the ionization chambers become activated there do not seem to be difficulties with induced radiation background or radiation damage to sensitive electronics

Lumi Tools Mini Workshop 15-16 Apr. 1999

US LHC ACCELERATOR PROJECT

brookhaven - fermilab - berkeley

Backgrounds

- Backgrounds and systematic effects have been examined due to
 - 1. beam gas collisions
 - 2. beam-halo scraping
 - 3. drift of the IP position
 - 4. drift of crossing angle
 - 5. ac modulation of the crossing angle at the beam sweeping frequency
 - 6. activation of the Cu absorber and ionization chamber gas
 - 7. electronic noise
- Items 4. and 5. contributed the largest backgrounds (to luminosity and beam-beam separation respectively)
- In all cases the backgrounds have been estimated to be small compared to the expected signals

Estimated luminosity background rates are small compared to the pp inelastic collision rate

<u>Process</u>	<u>Scaling</u>	<u>Rate(sec-1)</u>
pp inel. collisions	~L	8x10 ⁸
beam gas collisions (10 ⁻¹⁰ Torr)	~L ^{1/2}	3.5x10 ⁴
beam halo scraping (1:6,500 cleaning eff)	~L	8x10 ⁴
$1\mu m$ slow drift of IP	~L	8x10 ³
1µrad slow drift of	~L	1.2x10 ⁶
Lumi Tools Mini Workshop 5-16 Apr. 1999	W.C. Turner Concepts for IR Absorber Luminosity Instrumentation	

Preliminary schedule

Activity	FY	98			FY	′99		FY	00		FY	'01		FY	02		FY	03		FY	04		FY	05	
Conceptu	ial d	lesi	gn																						
Prototype	des	sigr	ו ח	nd	fab																				
Prototype	tes	ts																							
Final des	ign																								
Fabricatio	on																								
Ship																									
Installatio	on																								

Options for IR absorber instrumentation

- Instrument TAN only or <u>TAN + TAS</u>
- Instrument IPs 1 and 5 or IPs 1,2,5 and 8
- <u>Single bunch (40 MHz)</u> or multi-bunch bandwidth (~4 MHz)
- <u>Quadrant</u> or single element ionization chambers

Summary

- Instrumentation of the IR absorbers is a potentially useful beam operations tool for optimizing luminosity
- Gas ionization chambers are practical radiation hard devices that can
 be engineered for high reliability
- Operational characteristics can be validated under LHC like conditions in an SPS test beam with 25 nsec bunched protons (H4 beamline)